Diversity and Evolution of Eukaryotes

Course Information

Item	Content	
Course title	Diversity and Evolution of Eukaryotes	
Semester	Fall semester each year	
Instructor	CHUAN KU	
Full/Half Yr.	Half	
Required/Elective	Elective	
Time	Friday 5,6	
Place	共 302	
Remarks	The course is conducted in English °	

Course Syllabus

Item	Content		
Course Description	This is an introductory course on the diversity of eukaryotes in different aspects — from genomes to ecological interactions. Major topics include evolutionary relationships and history, cell structures and functions, and importance for various ecosystems and humanity. More emphasis is put on eukaryotes less covered in other courses — namely protists (algae and non-photosynthetic microbial eukaryotes) — which occur in oceans, soils, lakes, animal guts and many other environments.		
Course Objective	To acquire a basic understanding of: 1. Evolutionary origin, history and diversity of eukaryotes and their genomes, organelles, biochemistry, cells, and organismic biology (Part I: Week 2–7) 2. Major eukaryotic lineages and important eukaryotic microbes (Part II: Week 9–12, written assignment and oral presentation) 3. Relationships between eukaryotic microbes and Earth, ecosystems, humans, and other microbes (Part III: Week 13 (and 9–12) + assigned readings)		
Course Requirement	General Biology or equivalent courses. Genomics, Cell Biology, Evolutionary Biology, and Ecology are relevant, but not required.		
References	1. Archibald et al., Eds., Handbook of the Protists (Springer, ed. 2nd, 2017). 2. Ad et al., Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019). 3. Lee, Phycology (Cambridge University Press, Cambridge, ed. 4, 2008). 4. Willey et al., Prescott's Microbiology (McGraw Hill Education, ed. 10, 2017). 5. Alberts et al., Molecular Biology of the Cell (Garland Science, ed. 6, 2015). 6. Other selected review articles and research papers		
Designated Reading	Course slides (midterm and final exam) Additional reading (final exam): Sun et al., Host range and coding potential of eukaryotic giant viruses. Viruses 1337 (2020). Wells et al., Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29:949–82 (2017).		

Week	Date	Topic	
Week 1	Sept. 8, 2023	Introduction; Tools, techniques and methods	
Week 2	Sept. 15, 2023	Origin and early evolution of eukaryotes	
Week 3	Sept. 22, 2023	Origin and early evolution of eukaryotes	
Week 4	Sept. 29, 2023	Mid-Autumn Festival	
Week 5	Oct. 6, 2023	Evolution of endosymbiotic organelles	
Week 6	Oct. 13, 2023	Cellular structures	
Week 7	Oct. 20, 2023	Metabolism, nutrition and cellular interactions; Cell cycle and life cycle	
Week 8	Oct. 27, 2023	Midterm exam	
Week 9	Nov. 3, 2023	Opisthokonts, Amoebozoans	
Week 10	Nov. 10, 2023	Archaeplastids	
Week 11	Nov. 17, 2023	SAR	
Week 12	Nov. 24, 2023	Haptists, Cryptists, Excavates and other eukaryotes	
Week 13	Dec. 1, 2023	Protists, Earth and humans	
Week 14	Dec. 8, 2023	Student presentations	
Week 15	Dec. 15, 2023	Student presentations; Written assignment due	
Week 16	Dec. 22, 2023	Final exam	

Grading

NO	Item	Pc	Explanations for the conditions
1	Written assignment	20%	Short research proposal
2	Oral presentation	15%	
3	Midterm	20%	Materials from weeks 1-7
4	In-class participation	10%	
5	Attendance and punctuality	10%	
6	Final exam	25%	Materials from weeks 9-13 (incl. concepts from weeks 1-7) and two assigned papers

Office Hour

Remarks	Instructor: Chuan Ku chuanku@gate.sinica.edu.tw
	TA: Ming-Wei Lai mwlai@gate.sinica.edu.tw (02-27871147)